A little background. In 1972 at 14, I got a kit to make a telescope, including the grinding and polishing of its objective, a 6 inch mirror. That was in East Haven, Connecticut. In late 1974, our family moved to Georgia, and I started another mirror as a highschool science fair project. I had half the focal length, and was a really rotten mirror. I loved it nonetheless, but life intervened, and it wasn't until now that I got back into it. I still have those old mirrors though!
I wanted a larger mirror this time around. At least a 10 inch, and finally I settled for a 12.5 inch. Back in 1972, that was the biggest you could find, and out of my price range. But nowadays its a good starting point for the hobby, particularly if you have done it before, and liked doing it.
Building a telescope requires a lot of thought and curiousity, and creativity. So many of the things that you need to do have never been tried before by anyone. And a lot of them fail, too. But you pull in a lot from a lot of different disciplines -- optics, woodworking, drafting, engineering, metalworking, electronics, building construction, mechanics, materials analysys, metalurgy, you name it. All of these were contributing factors in my decision to become an engineer back then. And new things are always coming along that add to it. Computers, obviously, and the internet are new inventions since my highschool days that have contributed greatly. I used to spend hours at the drafting board, which is so much easier now with CAD software.
All of this has an end, of course. To make a telescope of enough size to be able to see all those things I never could before. I want to see the icecaps on Mars, and the Cassini Division in the rings of Saturn. I want to roam through the Pleades and Hyades and count the stars in the Hercules cluster. I want to travel through space to the Orion Nebula and wink at Joves big red eye. Maybe I can see Pluto or discover a comet, or a supernova.
I'm luckier than most, I do this at the urging of my wife Susan. So I have designed this telescope to be as low to the ground as possible so that she won't have to stand on a box to use it.
When I first started this, I had nothing but a table saw, a broken router, a drill, and a dirty cluttered shed build in 1951. I had a lot of work to do before I could even start thinking of making a saw horse, much less a precise optical instrument. I had to clean the place up. It was filthy. Rats had gotten in, attracted by the grass seed, so there was rat crap and pee everywhere. Some of the clapboards and part of the sill had rotted and English Ivy had crept in from the woods out back and had made a home in some old potting soil. And then there were the lady bug infestations. Thousands of them -- just wierd.
So I cleaned the table saw which I had not used in years and fix the router that I broke. I cleaned up and refinished the workbench, added pegboard to the new replacement wall that my nephew Patrick and I put in last summer. And that only got me to the place where I could gain a sense of direction. I needed to know where I was, and I sure couldn't the way it was.
There were so many things I had to do. I needed to come up with a design for it. I needed tools to even come up with the design. So I got a CAD program, TurboCad. Its a 2D version, which I am upgrading to 3D. I scoured the internet and found out so many resources it was astounding. Many of the things I need to do with this project have to take place in sequence. I needed to make the tooling and test equipment for grinding the mirror, before I started grinding the mirror, because I am cramped for space in the barn. Its only 11X20. The last thing I wanted to do was to start grinding, and not have a place to do it, or a tester to test it. Mirror grinding is very picky about not contaminating progressively smaller steps in grinding grit. One ill placed grain of grit can ruin a mirror being ground, and you might have to go back several stages and start over. If I were to start, and then stop to make test equipment, and then start up again, then all the cleaning up before grinding might come to naught.
And then there is the process of getting the mirror blank, and tool. It doesn't come cheap. I was fortunate enough to lay my plea at the feet of the crowd at Astromart, and one guy gave me a good deal on a 12.5 inch mirror blank that he had started 40 years earlier and had not finished. He's from Kansas, and not too far away from a few of my cousins.
And then I had to start thinking about eyepieces. Should I buy a set, or get some lenses and roll my own? I broke down and bought a set. Almost new from a guy in Indiana.
And then the question arose about the diagonal mirror. Do I polish my own flat and then cut it? The finished ones are so expensive, new. But then it was another guy from California who sold me his extra one for cheap.
And how do I mount the mirror. Well, as it turns out, there is a guy in a town nearby that will cut the parts I need from 1/2 inch aircraft aluminum for $25. KI was really expecting it to be about $400 or so.
And then there was my friend Terry that I met back in the mid 1980's who sold me a cheap drill press for $20 and at the same time he turned me onto Harbor Freight tools. He calls it the "disposable tool store". Dirt cheap crappy Chinese tools that fall apart on you, and when they do, you just go and get another one. They generally last long enough to do the job. I'm thinking of getting a cutoff grinder there for $10 on sale. More fun than a candy store any day of the week.
Finally, I had to order the grit. That should arrive this week sometime, and I can get started before my 50th birthday party.
Here are some pictures of what I have been doing.
Each mold screws together with deck screws... I use the Spax type with the star shaped driver tool. I use my trusty Skil battery powered screwdriver, and I am rockin. If you don't have a battery powered screwdriver, then you really should take up another hobby.
Next to it are my two old mirrors from back in the 1970's. They are both aluminized, but one is pretty scratched up, and the other one is a bit spotty. One of these days I will regrind them both to make a pair of binoculars.
BTW, did I mention that I got first prise in my high school science fair and went onto the county fair?
The big mirror is already ground and polished to F8 (almost exactly, which says a lot about the original owner's abilities). I will bring that down to F5.5, which with a mirror of this diameter means a focal length of 68.75 inches.... ok, so maybe Susan will have to stand on a box sometimes... but not often.
Ok, thats enough for now. Next time I will show The Foucault knife edge tester, the tester stand and base and a couple of innovations I had with all of that.
No comments:
Post a Comment